## Basic of Graphs

Definition 1. A graph $G=(V, E)$ consists of a vertex set $V$ and an edge set $E$, where the elements of $V$ are called vertices and the elements of

$$
E \subseteq\binom{V}{2}=\{(x, y): x, y \in V\}
$$

are called edges.

If $E$ contains unordered pairs, then $G$ is an undirected graph, otherwise, $G$ is directed graph. In this course, all graphs are undirected.

In this course, all graphs are simple, that is, it contains no loops and multiple edges.

We say vertices $i$ and $j$ are adjacent if $(i, j) \in E$, write as $i \sim_{G} j$. We say the edge $(i, j)$ is incident to the endpoints $i$ and $j$. Let $e(G)=\#$ edges in graph $G=(V, E)$, i.e., $e(G)=|E|$. The degree of a vertex $v$ in graph $G$ denote by $d_{G}(v)$, is the number of edges of $G$ incident to $v$.

The neighborhood of a vertex $v$ is the set of vertices $u$ s.t. $u$ and $v$ are adjacent, i.e., $N_{G}(v)=\left\{u \in V(G) \mid u \sim_{G} v\right\}$.

$$
\Rightarrow d_{G}(v)=\left|N_{G}(v)\right|
$$

A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E \cap\binom{V^{\prime}}{2}$, and we write as $G^{\prime} \subseteq G$.

A graph with $n$ vertices is a complete graph or a clique denote by $K_{n}$ if all pairs of vertices are adjacent. So $e\left(K_{n}\right)=\binom{n}{2}$.

A graph with $n$ vertices is called an independent set, denoted by $I_{n}$, if it contains no edge at all.

Given a graph $G=(V, E)$, its complement is a graph $\bar{G}=\left(V, E^{c}\right)$ with the same vertex set $V$ such that $E^{c}=\binom{V}{2} \backslash E$. So clearly $e(G)+e(\bar{G})=\binom{n}{2}$ where $n=|V(G)|$.

Definition 2. Two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic if there exists a bijection $f: V \rightarrow V^{\prime}$ such that $i \sim_{G} j$ if and only if $f(i) \sim_{G^{\prime}} f(j)$.


K4

$K_{4}$

Peterson graph

The degree sequence of a graph $G=(V, E)$ is a sequence of degrees of all vertices listed in a non-decreasing order.

Problem. If two graphs $G$ and $H$ have the same degree sequence, then they are isomorphic?

The answer is NO.


Definition 3. A path $P_{k}$ of length $k-1$ is a graph $v_{1}-v_{2}-v_{3}-\cdots-v_{k}$, where $v_{i} \sim v_{i+1}$. Note that the length means the number of edges it contains.

Definition 4. A cycle $C_{k}$ og length $k$ is a graph consisting of $V\left(C_{k}\right)=$ $\left\{v_{i}, v_{2}, \ldots, v_{k}\right\}, E\left(C_{k}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k-1}, v_{k}\right),\left(v_{k}, v_{1}\right)\right\}$.

Definition 5. A graph $G$ is a planar graph, if we can draw $G$ on the plane such that its edges intersect only at their endpoints.

Example. $K_{4}$ is planar.


Exercise. $K_{5}$ is not planar.
Lemma 6 (Hand-shaking Lemma). In any $G=(V, E)$,

$$
\sum_{v \in V} d(v)=2|E|
$$

Proof. Let $F=\{(e, v): e \in E(G), v \in V(G)$ s.t. $e$ is incident to $v\}$, i.e., $v$ is one of the two endpoints of $e$. Then

$$
|F|=\sum_{e \in E(G)} 2=2|E|,|F|=\sum_{v \in V(G)} d(v) \Rightarrow \text { Done }
$$

Corollary 7. In any graph $G$, the number of vertices with odd degree is even.
Proof. Let $\mathcal{O}=\{v \in V(G)$ s.t. $d(v)$ is odd $\}, \mathcal{E}=\{v \in V(G)$ s.t. $d(v)$ is even \}. Then

$$
\begin{gathered}
2|E|=\sum_{v \in V} d(v)=\sum_{v \in \mathcal{O}} d(v)+\sum_{v \in \mathcal{E}} d(v) \\
\Rightarrow \sum_{v \in \mathcal{O}} d(v) \text { is even } \Rightarrow|\mathcal{O}| \text { is even } .
\end{gathered}
$$

Corollary 8. In any graph $G$, if there exists a vertex with odd degree, there are at least two vertices with odd degree.

Let us consider the following application.
Let us draw a large triangle $A_{1}, A_{2}, A_{3}$ in the plane, with 3 vertices $A_{1}, A_{2}, A_{3}$. Then we divided this large triangle arbitrarily into small triangles, s.t. no triangles can have a vertex inside an edge of any other triangle.

Then we assign colors $1,2,3$ to all vertices of there triangles, under the following rules:
(1). The vertex $A_{i}$ is assigned the color $i$ for $\forall i \in 1,2,3$.
(2). All vertices lying on the edges $A_{i} A_{j}$ of the large triangle must be assigned the color $i$ or $j$.
(3). All interior vertices can be assigned any color 1,2 , or 3 .


Lemma 9 (Sperner's Lemma (a planar version)). For any assignment of colors described as above, there always exists a small triangle whose three vertices are assigned all three colors 1, 2, 3 .

We call such triangle as a rainbow triangle.
$V(G)=\{$ the face of any small triangles, and the outer face $\}$. We define the edges of $G$ as follows:

Two vertices of $G$, i.e. 2 faces of the drawing, are adjacent in $G$ if they are neighboring faces and the two endpoints of their common edge have colors 1 and 2 .

